5 Generalizations

• All of the above generalizes naturally to \mathbb{R}^3 :

$$\begin{aligned} |\langle a_1, a_2, a_3 \rangle| &= \sqrt{a_1^2 + a_2^2 + a_3^2} & \langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle \\ c\langle a_1, a_2, a_3 \rangle &= \langle ca_1, ca_2, ca_3 \rangle & \langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle \end{aligned}$$

• Algebraically, vectors behave a lot like scalars, e.g.

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 $c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$ $(c+d)\vec{a} = c\vec{a} + d\vec{a}$

• See p. 802 of Stewart for a fuller list

6 Standard basis vectors and unit vectors

• Standard basis vectors in \mathbb{R}^3 :

$$\vec{i} = \langle 1, 0, 0 \rangle$$
 $\vec{j} = \langle 0, 1, 0 \rangle$ $\vec{k} = \langle 0, 0, 1 \rangle$

• We can write any vector as the sum of scalar multiples of standard basis vectors:

$$\langle a_1, a_2, a_3 \rangle = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$

- A **unit vector** is a vector with length 1
 - For example, \vec{i} , \vec{j} , \vec{k} are all unit vectors
- The unit vector that has the same direction as \vec{a} (assuming $\vec{a} \neq \vec{0}$) is

Example 5. Let $\vec{a} = 4\vec{i} - \vec{j} + 2\vec{k}$ and $\vec{b} = \vec{i} + 2\vec{k}$.

- a. Write $\vec{a} 2\vec{b}$ in terms of $\vec{i}, \vec{j}, \vec{k}$.
- b. Find a unit vector in the direction of $\vec{a} 2\vec{b}$.

a.
$$\vec{a} - 2\vec{b} = 4\vec{i} - \vec{j} + 2\vec{k} - 2(\vec{i} + 2\vec{k})$$

 $= 4\vec{i} - \vec{j} + 2\vec{k} - 2\vec{i} - 4\vec{k}$
 $= 2\vec{i} - \vec{j} - 2\vec{k} = \langle 2, -1, -2 \rangle$
b. $|\vec{a} - 2\vec{b}| = |\langle 2, -1, -2 \rangle|$ => unit vector in the same direction
 $= \sqrt{2^2 + (-1)^2 + (-2)^2}$ as $\vec{a} - 2\vec{b} = \frac{(2, -1, -2)}{3}$
 $= \sqrt{9} = 3$ $= \langle \frac{2}{3}, -\frac{1}{3}, -\frac{2}{3} \rangle$

• Note: all of this applies to vectors in \mathbb{R}^2 in a similar way

7 Problems with forces

- Some physics:
 - Force has magnitude and direction, and so it can be represented by a vector
 - Force is measured in pounds (lbs) or newtons (N)
 - If several forces are acting on an object, the **resultant force** experienced by the object is the <u>sum of these</u> <u>forces</u>

Example 6. A weight \vec{w} counterbalances the tensions (forces) in two wires as shown below:

The tensions \vec{T}_1 and \vec{T}_2 both have a magnitude of 20lb. Find the magnitude of the weight \vec{w} .

$$\vec{T}_{1} = \langle -20 \cos 47, 20 \sin 47 \rangle \qquad \vec{T}_{2} = \langle 20 \cos 47, 20 \sin 47 \rangle$$
Resultant force = $\vec{0}$
 $\vec{0} = \vec{T}_{1} + \vec{T}_{2} + \vec{w} \qquad =) \qquad \vec{w} = -\vec{T}_{1} - \vec{T}_{2}$
 $= \langle 0, -40 \sin 47 \rangle$
 $=) |\vec{w}| = \sqrt{0^{2} + (-40 \sin 47)^{2}} = \sqrt{(40 \sin 47)^{2}} = 40 \sin 47$

• Note: if an object has a mass of m kg, then it has a weight of mg N, where g = 9.8