5 Generalizations

- All of the above generalizes naturally to \mathbb{R}^{3} :

$$
\begin{array}{ll}
\left|\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} & \left\langle a_{1}, a_{2}, a_{3}\right\rangle+\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle \\
c\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle & \left\langle a_{1}, a_{2}, a_{3}\right\rangle-\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle
\end{array}
$$

- Algebraically, vectors behave a lot like scalars, e.g.

$$
\vec{a}+\vec{b}=\vec{b}+\vec{a} \quad c(\vec{a}+\vec{b})=c \vec{a}+c \vec{b} \quad(c+d) \vec{a}=c \vec{a}+d \vec{a}
$$

- See p. 802 of Stewart for a fuller list

6 Standard basis vectors and unit vectors

- Standard basis vectors in \mathbb{R}^{3} :

$$
\vec{i}=\langle\vec{j}=\langle 1,0,0\rangle\langle 0,1,0\rangle \quad \vec{k}=\langle 0,0,1\rangle
$$

- We can write any vector as the sum of scalar multiples of standard basis vectors:

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}
$$

- A unit vector is a vector with length 1
- For example, $\vec{i}, \vec{j}, \vec{k}$ are all unit vectors
- The unit vector that has the same direction as \vec{a} (assuming $\vec{a} \neq \overrightarrow{0}$) is

$$
\frac{\stackrel{\rightharpoonup}{a}}{|\stackrel{\rightharpoonup}{a}|}
$$

Example 5. Let $\vec{a}=4 \vec{i}-\vec{j}+2 \vec{k}$ and $\vec{b}=\vec{i}+2 \vec{k}$.
a. Write $\vec{a}-2 \vec{b}$ in terms of $\vec{i}, \vec{j}, \vec{k}$.
b. Find a unit vector in the direction of $\vec{a}-2 \vec{b}$.
a. $\vec{a}-2 \vec{b}=4 \vec{i}-\vec{j}+2 \vec{k}-2(\vec{i}+2 \vec{k})$

$$
\begin{aligned}
& =4 \vec{i}-\vec{j}+2 \vec{k}-2 \vec{i}-4 \vec{k} \\
& =2 \vec{i}-\vec{j}-2 \vec{k}=\langle 2,-1,-2\rangle
\end{aligned}
$$

b. $|\vec{a}-2 \vec{b}|=|\langle 2,-1,-2\rangle| \quad \Rightarrow$ unit vector in the same direction

$$
\begin{array}{lrl}
=\sqrt{2^{2}+(-1)^{2}+(-2)^{2}} & \text { as } \vec{a}-2 \vec{b} & =\frac{\langle 2,-1,-2\rangle}{3} \\
=\sqrt{9}=3 & & =\left\langle\frac{2}{3},-\frac{1}{3},-\frac{2}{3}\right\rangle
\end{array}
$$

- Note: all of this applies to vectors in \mathbb{R}^{2} in a similar way

7 Problems with forces

- Some physics:
- Force has magnitude and direction, and so it can be represented by a vector
- Force is measured in pounds (lbs) or newtons (N)
- If several forces are acting on an object, the resultant force experienced by the object is the sum of these forces

Example 6. A weight \vec{w} counterbalances the tensions (forces) in two wires as shown below:

The tensions \vec{T}_{1} and \vec{T}_{2} both have a magnitude of 20lb. Find the magnitude of the weight \vec{w}.

$$
\begin{aligned}
& \vec{T}_{1}=\langle-20 \cos 47,20 \sin 47\rangle \quad \vec{T}_{2}=\langle 20 \cos 47,20 \sin 47\rangle \\
& \text { Resultant force }=\overrightarrow{0} \\
& \begin{aligned}
\overrightarrow{0}=\vec{T}_{1}+\vec{T}_{2}+\vec{\omega} \Rightarrow \vec{w} & =-\vec{T}_{1}-\vec{T}_{2} \\
& =\langle 0,-40 \sin 47\rangle
\end{aligned} \\
& \Rightarrow|\vec{\omega}|=\sqrt{0^{2}+(-40 \sin 47)^{2}}=\sqrt{(40 \sin 47)^{2}}=40 \sin 47
\end{aligned}
$$

- Note: if an object has a mass of $m \mathrm{~kg}$, then it has a weight of $m g \mathrm{~N}$, where $g=9.8$

